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Zero-temperature error-correcting code for a binary
symmetric channel
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} Service de Physique Théorique, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette Cedex,
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Abstract. We study a coavolutional error-correcting code with a minimum error probability
decoding procedure, which is designed to lower the distortion of messages transmitted through
a noisy binary symmetric channel. The problem can be rephrased in terms of zero-temperature
properties of a one-dimensional disordered spin model, with random two- and three-spin
couplings. For instance the ground-state magnetization is related to the average emor per bit of
decoded output messages. The ground-state energy is evaluated exacily, whereas ather relevant
quantities are expanded as power series in the density p of impurity couplings, a measure of
the level of channel noise. These analytic results are compared with the cutcomes of numerical
simulations.

1. Introduction

One of the standard topics in the mathematical theory of communication deals with the
corruption of messages sent through a noisy channel [1-4]. The use of error-correcting
codes usually arises in this framework to solve two key problems, namely the redundancy
of source messages and the distortion of transmitted messages due to channel noise. Indeed
the standard way of handling the latter point consists of encoding the emitted data, in order
to strengthen the reliability of transmission. The communication system includes a coding
device which converts a message, i.e. a sequence of information symbols {s,} ¢,<y drawn
from the emitting source, into a new message {Vu};<agpr- This procedure introduces some
redundancy in the original message, measured by the rate R = N/M of the code. The
encoded message is then transmitted through a noisy channel which may corrupt each of
its bits, thus delivering an output sequence {K}ygqqp». Whose components may either be
real-valued, e.g. for a Gaussian channel, or integer-valved, e.g. for a binary channel. The
capacity C of the channel is defined as the maximal amount of information per bit that
can be transmitted through it. If R > C, the frequency of errors is bounded from below
by a non-zero value, so that the communication system cannot be considered as reliable.
Conversely, if B < C, it is possible to devise optimal error-correcting codes, together
with appropriate decoding algorithms, such that the frequency of errors vanishes in the
thermodynamical limit of infinitely long messages (channel-coding theorem) [1-4]. This
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result gave rise to many investigations which aimed at designing such optimal codes and
decoding procedures. Sourlas [5] established that the decoding step of the general family of
convolutional codes amounts to finding the ground state(s) of a suitably defined spin-glass
Hamiltonian. In the present context the term spin glass is to be taken in the generic sense
of a disordered and frustrated magnetic model. One of the known explicit examples of an
ideal error-correcting code in the limit of a vanishing rate has been derived [6] from the
random-energy model (REM) [7], well known in statistical mechanics.

This paper reports on analytical results concerning a simple error-correcting code,
analogous to those actually used in telecommunications. The properties of this code can be
rephrased in terms of a one-dimensional (1D) frustrated spin model, somewhat analogous
to spin glasses and to random-field models. The main goal of this work is to investigate
the zero-temperature properties of the spin model, and to interpret our predictions in the
language of the theory of error-correcting codes. After recalling some general formalism
in section 2, we present analytical results in section 3, whereas section 4 is devoted to
numerical simulations and to a short discussion.

2. General formalism

Consider a source producing information messages. Each message is a sequence of the
form s = {81, 92, ...,5x], made of I bits 5, = =1, and it occurs with a given a priori
probability P;(s) ~ expl—H;(s)]. A convolutional error-correcting code [3] transforms
each information symbol into a product of some of the 5,’s, thus converting the source
message § into a new message ¥ = {1, V2. -.., ¥ar} of bits ¥, = 1, according to
deterministic, translationally invariant rules of the form

yﬂ,=ns,, with o« ={n,n,....,0)€{l,...,N}¥*. .10

nea

We define the range, or memory, of the code as the maximal distance » between two ng’s
belonging to the same set of indices o [3], namely

r=1-4+max max |#s—Huml. {2.2)
o ngamiea

The encoded message is then sent through a memoriless noisy binary channel, which
delivers a distorted output sequence K = {K|, K2, ..., Ky}. In this case, the way each bit
sent 9 is corrupted does not depend on the other transmitted bits. Hence the conditional
probability P(K,.|¥.) to have received the symbol K, knowing that the symbol y, was
sent, determines the statistical properties of the channel completely.

It has been shown [5,6] that the probability P{o|K) that the original message was
o = {01,0%,...,0y}, knowing that the sequence K was received, can be expressed in
terms of the Hamiltonian of a ID spin model, whose coupling constants depend on the
output message K, according to

Plo|K) ~ expl—Hg (o) — H: ()] (2.3)
where
z . P(K,I1)
Hro)y=—% JED) ]| lon with J(K) =1 ln——— . (2.4)
8 2k [] 2 P Kl = D)
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The simplest procedure for inferring, from the received codeword K, what message s
was sent as an input, consists of choosing the message o ‘“ which maximizes the probability
given in (2.3). This is the minimum error probability decoding (MED) scheme [3]. When ali
emitted words are equally probable, i.e. when H, (o) reduces to a constant, this is equivalent
to finding the ground state(s) of the Hamiltonian Mg ().

We are thus led to consider zero-temperature properties of a disordered spin model,
since the couplings J(K,)’s represent quenched disorder, whose realization is determined
by the channel output, and where the dynamical spin variables a, represent the inferred
source message. The probability of error per bit, o1, equivalently, the average error per bit,
in the inferred message &*? reads

Pe(s, 0@) = ( - ana(‘”) (2.5)

where 0@ depends implicitly on the quenched disorder.

In the case of a discrete channel, the Hamiltonian Hy (o) may have many degenerate
ground states, due to the combined effects of disorder and frustration. The number of such
ground states then increases as exp(¥ Sp), with Sp being the zero-temperature entropy per
spin.

If we assume that the channel is symmetric, ie. P(—Ky| —¥2) = P(Kuly), the
invariance of Hy (o) and p.(s, 0@ under the gauge transformation 5, — 8,5,, G, = 8,0y,
Ko = (J1,cq £1) Ko, for any sequence of binary variables g, = :t1, implies that the whole
procedure does not depend on the source message {s,}icney. Taking s, = s,, we can
evaluate the probability of error per bit by considering a message consisting of 1’s only.
We thus obtain

pe=3(1—m) (2.6)

where

(O} @7

[ =
M=

n=l

is the magnetization per spin of the inferred ground state. Moreover, the explicit dependence
on the ground state can be removed as well, since the magnetization is a selfaveraging
guantity: its value per spin is expected to be equal to a certain constant m, for almost all
realizations of disorder in the thermodynamical limit (N — o0). There may be, however,
exceptional realizations of disorder for which the ground states have a magnetization
different from m, so that one should, in principle, determine the whole distribution of
De. We shall come back to this point in section 3.2.

The above approach can be implemented numerically for any ID disordered spin
Hamiltonian built from a finite-range convolutional error-correcting code by means of
the zero-temperature transfer-matrix algorithm, also called dynamical programming, or the
Viterbi algorithm [3]. This procedure allows one to find the ground states in polynomial
time, with a memory of size 27

Rujan [8] recently proposed another decoding algorithm, which we refer to as the
[finite-temperature decoding (FTD) scheme, which merely focuses on the minimization of
the probability of error p., rather than on the maximization of the conditional probability
P(o|K). This scheme consists in taking the rth bit of the decoded sequence equal to the
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sign of the local magnetization m, = {o,} at temperature 7 = 1, in suitable units to be
defined below. The value of p. has been shown to be smaller than that obtained with
MED. This result was proved rigorously by Nishimori [9] when the quenched disorder obeys
laws of the form P{K) = G(|K]) exp{y K); it was subsequently extended to any kind of
randomness [10]. The algerithmic complexity of the procedure remains polynomial in time,
but the required memory is now of order 27! N,

Throughout the following, we restrict the analysis to a convolutional error-correcting
code of rate R = % and range r = 3, that encodes each bit s, of the original message,
emitted by a uniform source, into two bits 1, @, defined as follows:

WD = SaciSatl V) = S 1SaSad - (2.8)
The encoded message y(s) is then sent through a memoriless binary symmetric channel
{B5C). The level of channel noise is characterized by the probability p (p <« ! in practice)
for any bit of information to get corrupted during transmission. Hence the conditional
probability that the output message is {K., Ln}1<aqn» given that the encoded message was
2, vPhigngw, reads

P(Kly) = (1 — p)8(Ku — ) + p 8(Ku + ) 2.9

together with a similar formuola for L,.
Owing to the simple form J(K,)/K, = J(L,)/L, = J(p) of the coupling constants in
the binary case, with

1—
J(p)=1tm—~ (2.10)
the Hamiltonian Hy (o) defined in (2.4) reads
Hy (o) = J(pYH} (o)
with
N
k(o) == (KnOn-10ut1 + LaOn-102041) - (2.11)

n=1

The model defined by the reduced Hamiltonian H’ of (2.11) is the central object of
the present work. It can be viewed as a spin model living on a triangular ladder, with
longitudinal nearest-neighbour binary interactions K, and ternary interactions L, around
the triangular plagueties (see figure 1). The two- and three-spin couplings X, and L, are
independent random variables, which assume the values (1) and (—1), with respective

o K o E o6 K o K o
\ ! r\\ / r\\ ! r\\ ’r\\
/ % 1-5 / Y\ Ls / Y L’ ,” i Lg / S
s / / I
7 Lz N L& N i LB N / IB N/ I'm \
" 5 Y " v
7y K2 Ty K4 O KB 0y KB 0y l{m 0y
Figure 1. Triangular ladder geometry of the spin medel associated with the reduced Hamiltonian
Hi (o).
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probabilities (1 — p) and p. It will become clearer in the following that the disordered spin
model defined by the Hamiltonian (2.11) has some characteristic features in common with
the random-field Ising chain, rather than with the 1D Ising spin glass. Indeed, the three-spin
couplings L, are, to some extent, analogous to a random magnetic field spread over three
consecutive sites.

The regime of interest for the theory of error-comrecting codes is that of a weak
level of noise (p <€ 1). We shall therefore refer to the couplings equal to (—1) as
impurity couplings. The temperature T = 1 of Rujdn’s FTD scheme corresponds to the
so-called Nishimori temperature [11], where the binary spin-glass model (with only two-
spin interactions) becomes exactly solvable, by virtue of the special form (2.10) of the
strength of the interactions.

The Hamming distance between the received message X (the only available information
for the decoder) and any possible codeword ¥ (o'} in the coupling space {—1, +1}¥ can be
expressed in terms of H (o), namely

N
diK, y(o)] = % E — y,f”)z 4 (L,, - y,,(z)) ] = 2N + Hy (o). (2.12)

n=I1

This formula underlines the interpretation of MED as the search of the set of messages
lying closest to the received sequence. Defining < as the mean distance between any given
codeword and its noisy realizations, Rujan’s FTD method merely relies on the search of all
the messages ¥ whose distance to the received message K equals d;, which is obviously
larger than d[K, y{c“)].

3. Analytical results for the spin model

We now turn to the study of the zero-temperature properties of the reduced Hamiltonian
H) (o), and to their interpretation in the language of information theory. We shall consider
successively the following thermodynamical quantities, defined per spin. The ground-
state energy E{(p) = Eo(p)/J(p) (related to the minimum distance between the original
sequence and its inferred interpretations in the coupling space), the zero-temperature entropy
So(p) (related to the number of different inferred messages, a measure of the reliability of
the decoder), and the zero-temperature magnetization m(p) (related to the probability of
error per bit in the decoded message). We shall derive an exact expression for Ej(p),
whereas Sp(p) and m(p) will be obtained as power series in p, which are relevant in the
small-p regime of interest.

3.1. Exact ground-state energy

We first recall the main lines of the transfer-matrix formalism for 1D Ising models [12, 13].
Let Z2'* be the constrained partition functions of a chain of length n at temperature
T = 1/3, with the boundary conditicns o, = &; = %1, o, = &2 = £1. These four
random variables obey linear recursion relations of the form

(s
zn+I T r-l-

Fof = B G0
Al B
Z /A
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where 7, is the 4 x 4 transfer matrix

ZK,;+LH Z—Kn"Ln 0 0
0] 0 ZK.':"‘Ln Z_Kn+LJ:
T=| 0o o g . (32)
0 0 Z"Kﬂ.'i'Lr. ZK“—Lﬁ

with z = ef. The free energy per spin is given by the Lyapunov exponent of the product
of non-commuting transfer matrices

.1 &
— BF = ﬂ}%ﬁlmﬂz. (3.3)

The analysis of low-temperature properties goes as follows [12-14]. The partition
functions obtained by iterating (3.1} have a leading power-law behaviour at low temperature,
namely

Z}Ht m AT+ Z7t m AT @ 00 54
Z . K
zr‘f""‘ -5 A:_zrn'l'ﬂbn Zn-- =Y A;"zxu+2€n

In order to evaluate the ground-state energy E,(p), it is sufficient to keep track of the
exponents a,, b,. and ¢,. They obey the following recursion relations:

Gpy1 = max(K, + by, Ly + ¢y) — max(X, + Ly, a,)
b1 = max(0, K, + L, 4 az) — max{Ky + Ly, a,) (3.5)
Cast = Max(K, + ¢, L, + by) —max(K, + L,, a,)

and the ground-state energy is given by
Ey(p) = =2 +4p — 2{{ max(Ky + La, )} 3.6)

where the double brackets {{---)) denote an average over the stationary joint distribution of
the three variables (a,, &,, ¢;), which is invariant under the transformation {3.5). We have
shown by iterating this transformation that the associated invariant distribution is supported
by a finite set, which consists of 31 integer points in the three-dimensional space (a, b, ¢).
The statistical weights associated with these points have been obtained by solving the linear
system which expresses their invariance under the recursion (3.5).

We prefer to skip tedious calculations, and just give the following exact rational formula
for the reduced ground-state energy

N
Ejp) = -2+ 2p 22 3.7)

D{p)

with
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N(p) =2—12p + 82p* — 322p> + 1002p* — 2542p° + 5060p° — 7873 p7
+ 14285p° — 55486 p° 4 248 842p'® — 874448 p"! 4 2383088 p'2
—5206968p"% + 9349 136p™* — 13992320p" + 17 566 864 p'
—18506368p"7 + 16281888p'® — 11846592p"° + 7016576 p%°
—3302144p* + 1189376 p% — 308224 p> + 51 200p* — 4096p%

D(p) =1—6p +46p* — 130p> + 419p* — 1030p° + 1607p% — 827p" — 5714 p°
+37267p° — 159858p'% + 556346 — 1653 662p'2
+4197065p" —~ 8714696p™* + 13230758 p'° — 8419724 p'6

141

(3.8

—27952108p" + 131054 496p’® — 335734 552p"° + 649530288 ™

—1026616304p% + 1367 175616p> — 1555 663 328 p%

+ 1521159 872p% — 1278948 928 p + 921379 840p%

— 564 579456p + 290795264 p*® — 123716096 p*° 4 42372096 p*°
— 11237376p +2166784p* — 270336p™ + 16384p* .

The reduced ground-state energy is plotted as a full curve on figure 2.

It is a

monotonically increasing function of p, from E{(0) = —2 to Ey(1) = —g-. The broken
curve on the figure shows a plot of the energy E;(p) of the ground states associated with
the error-correcting code problem, taking into account the sign of J(p) defined in (2.10),

namely
_1-2 N I 4 - I J I
-14 /
=
= 16 -
C
.=
£
-1.8 -
\
v
]
\
v
20 . : : : ' '
0 0.2 04 0.8 0.8 1.0
p

Figure 2. Exact ground-state energy Ej(p) of the reduced Hamiltonian H} (o) (full curve),

and its variant £ (p} defined in (3.9) (broken curve).
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Eylp) for J(p)>0 ie. O<p< %

Ey(p) = [ (39

Ef(l—py  for J(p)<0 ie f<p<l.

This expression is invariant under the change of p into (1 — p), as it should. The difference
between Ej and Ej originates in the fact that Hg (o) and H), (o) have identical ground
states only for p < 1.

For p — 0, we have Ej(p) = —2+4p—~20p®—244p*+. .. The first two terms of this
expansion are nothing but the energy Ep = —(K + L) = —2(1 — 2p) of the ferromagnetic
spin configuration (0, = 41 for 1 £ n < N), where the bar denotes an average over
the quenched disorder. The next terms in the above expansion describe more complex
configurations involving flipped spins (¢, = ~1). We shall come back to that point more
extensively in section 3.2. For p — 1, we have E[(p) = —% —32(1 - p)/27+---. The
value Ej(1) = —% is the energy of the periodic ground state {+ + —)*°, which is three-fold
degenerate. Finally, the reduced ground-state energy exhibits a very flat platean around
p = 1. Indeed we have E{(p) = —334/231+284800(p — $)°/53 361 + - --. This ensures
that Ej(p) is continuous, together with its first four derivatives with respect to p, at the
symmetric peint p = %, where J(p) vanishes,

The investigation of the complex singularities of thermodynamic functions often
provides a useful alternative viewpoint {see [15] for a review). In the present case the
ground-state energy E{(p} is exactly known as a rational function of p. Figure 3 shows a
plot of its poles and zeros in the complex p-plane. The 34 poles and 34 zeros turn out to
come in closely grouped sets, either as pairs or larger neutral molecules. This phenomenon
is to be put into perspective with the fact that E;(p) is almost a constant over a large part
of the physical range {0, 1].

1.0 i T . 1
05 ’ LR
e‘ﬂ
a, . N
E 0 ‘. LI
B. g.ﬂ
~05 O
-10 e |
-0.5 0 05 1.0 15
Re p

Figure 3. Exact poles (full symbols) and zeros (open symbols) of the reduced ground-state
energy Ej(p) in the complex p-plane, The full line segment represents the physical range
[0, 1].
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3.2. Other zero-temperature observables

The exact treatment of other zero-temperature cbservables, besides the ground-state energy,
is, in our opinion, beyond the possibility of analytical calculations. For instance the
evaluation of the ground-state entropy requires the determination of the distribution of
the prefactors A2** which occur in the low-temperature behaviour (3.4) of the partition
functions. This calculation cannot be worked out explicitly in degenerate situations such as
the present one [12,13].

Since in any case the regime of interest is that of a low noise level (p < 1), we have
made use of an enumeration scheme which allows us to derive systematic expansions of
various zero-ternperature observables as power series in the concentration p of impurity
interactions. The spirit of the approach is as follows. In order to expand observables up
to order p* included, introduce any number £ < k of impurity couplings K,, L, in a
Iong enoungh chain, and look for all the spin configurations whose energies are less than
or equal to that of the ferromagnetic state for that particular realization of disorder. The
contributions of these realizations to physical observables are polynomials in the length N
of the chain, but only the extensive terms (i.e. those linear in ) are to be kept, according to
a well known argument used thoroughly, e.g. in high-temperature expansions in statistical
mechanics (see [16])

The enumeration algorithm starts being non-trivial for £ = 3; indeed. the difference
between the ground-state energy given in (3.7) and (3.8) and the energy of the ferromagnetic
state scales as p®, as already underlined in section 3.1. This behaviour can be explained
as follows. Every spin o, occurs in five terms of the Hamiltonian H},. At least three of
those five coupling constants have to be impurity couplings, in order for the spin under
consideration to be flipped in the ground state(s) of the chain. The statistical weight of such
a realization of disorder is of order p° for small p. The same argument applies to other
" properties of the ground states, and therefore shows that thermodynamical quantities at zero
temperature, such as the entropy So(p)} and the magnetization m(p), will be non-trivial only
at order p°. ,

Apart from a non-zero value of the zero-temperature entropy, the presence of many
degenerate ground states with different local spin ordering has another consequence. The
Hmit magnetizations m.(p) (respectively, m_(p)) of the spin chaip in an infinitesimaily
positive (respectively, negative) external magnetic field # — 0% (respectively, H - 0~)
do not coincide, in general. Rather, we expect m(p), m+{p) and m_(p) to be three
different self-averaging quantities, obeying the thermodynamical inequalities m_(p) <
m(p) < my{p) < 1, with all the differences being of order p*. The quantities m..(p)
and m_(p) are to be identified with the upper and lower bounds of the distribution of the
magnetization of all possible ground states, alluded to below (2.7).

We again skip details, and only give the following outcomes of the enumeration scheme,
up to order p* included:

EN(p) = —2+4p — 20p° — 244p* 4 O(p°) (3.102)
So(p) = (30In2 +31n3)p® + (—254In2+871In3 + 201n 5) p* + O(p°) (3.100)
24.0902 —48.2913
m+(p) =1 —20p° — 608p* + O(p°) (3.10¢)
m(p) = 1—83p —4244/5 p* + O(p°) (3.10d)
3488

m_(p) =1 - 154p° — 980p* + O(p°). (3.10¢)



144 C Dress et al

We wish to emphasize that an alternative method has been used in order to check all the
above series, based on an expansion of the invariant distribution of the prefactors Af#
introduced in (3.4), and of similar quantities, along the lines of [14].

We have extended the enumeration technique to ancther observable of interest in the
theory of error-correcting codes. For Rujan’s FTD scheme, Nishimori [9] showed that the
average error per bit reads in the thermodynamical limit

pe=13(1-15) with S = SIgn(Mp)7e - (3.11)

Because of the peculiar dependence on p of the Boltzmann weight at unit temperature (see
equation (2.10)), exp[—2J(p)] = p/(1 — p), the FID problem can also be dealt with by
means of the enumeration scheme. It involves a few extra terms in the expansion of physical
quantities, as compared with the zero-temperature expansion. Indeed, some of the low-lying
excited states of the Hamiltonian H’ (o) with, for example, three impurity couplings, may
give rise to contributions to the average defining 5. Our final result reads

S=1-86p" +0O(p*). (3.12)

4. Numerical simulations and discussion

We now turn to a quantitative comparison of the analytical predictions derived in section 3
with the outcomes of numerical simulations.

Firstly, we have simulated the encoding model both for the MED (T = 0) procedure,
by means of the zero-temperature transfer-matrix algorithm (Viterbi algorithm), and for
Rujdn’s FID (T = 1) procedure, using the finite-temperature transfer-matrix aigorithm. The
typical length of the input messages is of order 10° bits, and the error bars are obtained by
averaging over up to 500 independent realizations, depending on the value of p.

Our data concerning the average error per bit p, associated with the inferred messages
are shown in figure 4, for both MED and FrD. In the first place, it is worth noticing that our
data are far more accurate than those of previous simulations [8]. The numerical simulations
become more and more difficult as p — 0, because the rate of errors in decoded messages is
extremely low. Indeed there is only an efror of around 1.5 on average for an input message
of length 3 x 10° bits and for p = 0.005 (the mean number of errors without encoding being
1500). We have nevertheless been able to obtain reliable estimates of p, for values of p as
small as p = 0.0073, i.e. roughly one order of magnitude better than previous works.

In the whole range of interest (p < 0.15) the frequency of errors is only slightly smaller
for FTD than for MED. In the small-p regime a quantitative comparison between analytical
and numerical results is possible. A least-squares fit of all data in the range p < 0.03 yields

Pe & (43.67 + 0.48)p° + (423.6 £ 19.2)p* (MED) “n
1
Pe ™ (42.86 £ 0.40)p° + (307.2 % 15.9)p* (FID)

in excellent agreement with the outcomes of the analytical small-p expansions (3.104),
(3.12), namely

pe =44p° +424.4p% + O(p°) (MED)

4.2)
p.=43p°+0(p*)  (FID).
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0 0.04 '0.08 012 0.16

p

Figore 4. Results of numerical simulations concerning the ratio pe/p®, with pe being the
average error per bit for the MeED (full symbols) and FTo (open symbols) approaches. The
small-p expansion (4.2) for MED is shown as a full line, whereas the broken lines show the fits

.1y,

The leading behaviour p. = 44p® for the probability of error per bit in MED improves in 2
significant way a previously known upper bound [3], scaling as p*/2 for p — 0.

The data shown in figure 4 also allow us to evaluate the threshold probability pg
such that p.(pg) = po. We then have p.(p) < p for p < pg (the encoding procedure
improves transtuission), whereas p.(p) > p for p > po (the encoding procedure worsens
fransmission, and thus becomes. useless). We obtain two very similar threshold values for
both decoding procedures, namely

Po A 0.13 {MED)
4.3
po=0.14 (FTD)

the first value being in full agreement with that of [8].

Secondly, we have evaluated the full dependence on p of the zero-temperature entropy
8o, by means of a numerical iteration of the linear recursion relations, which can be derived
for the four amplitudes AZ-®* introduced in (3.4). As a check of this approach we recover
the ground-state energy E,(p) given in (3.7} and (3.8), within an error of the order of
5 x 107*. The data concerning So(p) are shown on figure 5. A quantitative agreement
with the analytical prediction (3.105) is only observed for p € 0.05. In the opposite limit
(p — 1), the entropy is found to vanjsh steeply, as Sp(p) ~ %(1 — p)In{1 — p). This
behaviour is a common characteristic feature of many !D random magnetic models with
diluted disorder, such as the random-field Ising chain [13, 14]. Finally, just like the ground-
state energy, the zero-temperature entropy exhibits a very flat plateau near p = %, around
the value $5(1/2) == 0.0284.

To sum up this work, we have shown how to obtain analytical results about the ground-
state energy and related zero-temperature properties of a simple error-correcting code. We



146 C Dress et al
T T T T T

0.04 ———m
0.03 /
-

0.02

0.01

0 L ] L i ' ] L ] L
0.4 0.6 0.8 1.0

0
P
Plot of the zero-temperature entropy Sp(p). Circles: numerical determination

Figure 5.
explained in the text. Full curve near p = {: equation (3.106). Broken curve near p = Q:
first term of (3.10b). Full curve pear p = 1. logarithmic estimate given in the text.

aim [17] at extending the present results to the more general situation where the two-spin
and three-spin couplings have two different binary distributions, characterized by different
magnitudes, and/or different probability weights. We also hope to extend the scope of the
present paper to error-correcting codes commonly used in telecommunications, by means of

the enumeration approach used to generate systematic power series in the level of noise p,
although calculations will become more tedious for convolution codes with larger ranges.
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