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Zero-temperature error-correcting code for a binary 
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France 
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Abstract. We study a convolutional emr-correcting code with a minimum error probability 
decoding procedure. which is designed to lower the distortion of messages transmitted through 
a noisy binary symmetric channel. The problem can he rephrased in terms of zero-temperature 
properties of a one-dimensional disordered spin model, with random two- and three-spin 
couplings. For instance the ground-state magnetization is related to the average emor per bit of 
decoded output messages. The ground-state energy is evaluated exactly, whereas other relevant 
quantities are expanded as power series in the density p of impurity couplings, a measure of 
the level of channel noise. These analytic results are compared with the outcomes of numerical 
simulations. 

1. Introduction 

One of the standard topics in the mathematical theory of communication deals with the 
corruption of messages sent through a noisy channel [14]. The use of error-correcting 
codes usually arises in this framework to solve two key problems, namely the redundancy 
of source messages and the distortion of transmitted messages due to channel noise. Indeed 
the standard way of handling the latter point consists of encoding the emitted data, in order 
to strengthen the reliability of transmission. The communication system includes a coding 
device which converts a message, i.e. a sequence of information symbols [ s ~ } ~ ~ ~ ~ ~  drawn 
from the emitting source, into a new message ( J & ~ ~ ~ ~ .  This procedure introduces some 
redundancy in the original message, measured by the rate R = N / M  of the code. The 
encoded message is then transmitted through a noisy channel which may corrupt each of 
its bits, thus delivering an output sequence (Kc l ] lGaGM,  whose components may either be 
real-valued, e.g. for a Gaussian channel, or integer-valued, e.g. for a binary channel. The 
capacity C of the channel is defined as the maximal amount of information per bit that 
can be transmitted through it. If R > C, the frequency of errors is bounded from below 
by a non-zero value, so that the communication system cannot be considered as reliable. 
Conversely, if R < C, it is possible to devise optimal error-correcting codes, together 
with appropriate decoding algorithms, such that the frequency of errors vanishes in the 
thermodynamical limit of infinitely long messages (channel-coding theorem) [14]. This 
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136 C Dress et a1 

result gave rise to many investigations which aimed at designing such optimal codes and 
decoding procedures. Sourlas [SI established that the decoding step of the general family of 
convolutional codes amounts to finding the ground state(s) of a suitably defined spin-glass 
Hamiltonian. In the present context the term spin glass is to be taken in the generic sense 
of a disordered andfrrrstrated magnetic model. One of the known explicit examples of an 
ideal error-correcting code in the limit of a vanishing rate has been derived [6]  from the 
random-energy model (REM) [7], well known in statistical mechanics. 

This paper reports on analytical results concerning a simple error-correcting code, 
analogous to those actually used in telecommunications. The properties of this code can be 
rephrased in terms of a one-dimensional (ID) frustrated spin model, somewhat analogous 
to spin glasses and to random-field models. The main goal of this work is to investigate 
the zero-temperature properties of the spin model, and to interpret our predictions in the 
language of the theory of error-correcting codes. After recalling some general formalism 
in section 2, we present analytical results in section 3, whereas section 4 is devoted to 
numerical simulations and to a short discussion. 

2. General formalism 

Consider a source producing information messages. Each message is a sequence of the 
form s = [SI, 32, .  . . , s ~ ] .  made of N bits s, = f l ,  and it occurs with a given a priori 
probability &(s) - exp[-'F&(s)]. A convolutional error-correcting code [3] transforms 
each information symbol into a product of some of the s,'s, thus converting the source 
message s into a new message y = {yl, yz, . . . , yM] of bits yu = f l ,  according to 
deterministic, translationally invariant rules of the form 

yu = n s n  with a = (nl,n2, . . . , nk] E 11,. . . , NIk 
n Ea 

We define the range, or memory, of the code as the maximal distance r between two ne's 
belonging to the same set of indices a [3], namely 

r = 1 fmax max In( - 
a Int.n&u 

The encoded message is then sent through a memoriless noisy binary channel, which 
delivers a distorted output sequence K = (K , ,  K2, . . . , KM]. In this case, the way each bit 
sent y ,  is corrupted does not depend on the other transmitted bits. Hence the conditional 
probability P(K,[y,) to have received the symbol Ka,  knowing that the symbol ye was 
sent, determines the statistical properties of the channel completely. 

It has been shown [5,6] that the probability P(uIK)  that the original message was 
U = [U,, cr2, . . . , uN], knowing that the sequence K was received, can be expressed in 
term of the Hamiltonian of a ID spin model, whose coupling constants depend on the 
output message K ,  according to 

where 

(2.4) 
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The simplest procedure for inferring, from the received codeword K ,  what message s 
was sent as an input, consists of choosing the message dd) which maximizes the probability 
given in (2.3). This is the minimum error probability decoding @ED) scheme 131. When all 
emitted words are equally probable, i.e. when U,Ja) reduces to aconstant, this is equivalent 
to finding the ground state(s) of the Hamiltonian Ux(a) .  

We are thus led to consider zero-temperature properties of a disordered spin model, 
since the couplings J (K,)'s represent quenched disorder, whose realization is determined 
by the channel output, and where the dynamical spin variables on represent the inferred 
source message. The probability of error per bit, or, equivalently, the average errorper bit, 
in the inferred message U @  reads 

where U@) depends implicitly on the quenched disorder. 
In the case of a discrete channel, the Hamiltonian '&(U) may have many degenerate 

ground states, due to the combined effects of disorder and frustration. The number of such 
ground states then increases as exp(NS,), with SO being the zero-temperature entropy per 
spin. 

If we assume that the channel is symmetric, i.e. P(-K,I -ye) = P(K,ly,), the 
invariance of b&(cr) and p.(s, dd)) under the gauge transformation s, + &"sa, U, + taun, 
K,  + (n,,, for any sequence of binary variables E, = f l ,  implies that the whole 
procedure does not depend on the source message (sn}IGn6N. Taking E,, = s,, we can 
evaluate the probability of error per bit by considering a message consisting of 1's only. 
We thus obtain 

pe = ;(I - m) (2.6) 

where 

(2.7) 

is the magnetization per spin of the inferred ground state. Moreover, the explicit dependence 
on the ground state can be removed as well, since the magnetization is a self-averaging 
quantity: its value per spin is expected to be equal to a certain constant m, for almost all 
realizations of disorder in the thermodynamical limit (N + 00). There may be, however, 
exceptional realizations of disorder for which the ground states have a magnetization 
different from m, so that one should, in principIe, determine the whole distribution of 
pe .  We shall come back to this point in section 3.2. 

The above approach can be implemented numerically for any ID disordered spin 
Hamiltonian built from a finite-range convolutional enor-correcting code by means of 
the zero-temperature transfermatrix algorithm, also called dynamical programming, or the 
Viterbi algorithm [3]. This procedure allows one to find the ground states in polynomial 
time, with a memory of size 2'-l. 

R u j h  [SI recently proposed another decoding algorithm, which we refer to as the 
finite-temperature decoding (FTD) scheme, which merely focuses on the minimization of 
the probability of error pe,  rather than on the maximization of the conditional probability 
P ( o l K ) .  This scheme consists in taking the nth bit of the decoded sequence equal to the 

~~ 



138 C Dress et al 

sign of the local magnetization m, = (U") at temperature T = 1, in suitable units to be 
defined below. The value of p .  has been shown to be smaller than that obtained with 
MED. This result was proved rigorously by Nishimori [9] when the quenched disorder obeys 
laws of the form P ( K )  = G(IKI)exp(yK); it was subsequently extended to any kind of 
randomness [lo]. The algorithmic complexity of the procedure remains polynomial in time, 
but the required memory is now of order 2r-'N. 

Throughout the following, we restrict the analysis to a convolutional error-correcting 
code of rate R = 4 and range r = 3, that encodes each bit s, of the original message, 
emitted by a uniform source, into two bits yd'), y,'", defined as follows: 

y p  = S,-,S,S,+l . (2.8) 

The encoded message y(s)  is then sent through a memoriless binary symmetric channel 
(BSC). The level of channel noise is characterized by the probability p ( p  << 1 in practice) 
for any bit of information to get corrupted during transmission. Hence the conditional 
probability that the output message is {K,,, Ln]l$n6N, given that the encoded message was 

y,(l) - - s"-Is"+l 

{ y i ' ) ,  Y , ? I I L ~ L N ~  reads 

P ( K n l y p )  = ( l - p ) S ( K ,  - y , " ~ ) + p S ( K . + y , ~ ' )  (2.9) 

together with a similar formula for L,. 

the binary case, with 
Owing to the simple form J ( K , ) / K ,  = J(L,)/L,  = J ( p )  of the coupling constants in 

(2.10) 

the Hamiltonian X K ( U )  defined in (2.4) reads 

X K ( 0 )  = J ( P ) X W  

with 

X',(u) = - .&%-lu"+l + L"~n-lu"%+l). (2.1 1) 

The model defined by the reduced Hamiltonian Xk of (2.1 1) is the central object of 
the present work. It can be viewed as a spin model living on a triangular ladder, with 
longitudinal nearest-neighbour binary interactions Ks, and ternary interactions L,  around 
the triangular pluqueffes (see figure 1). The two- and three-spin couplings K, and L, are 
independent random variables, which assume the values (+l) and (-l), with respective 

"=I 

Figure 1. Triangular ladder geomeuy ofthe spin model associated with the reduced Hamiltonian 
u m .  
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probabilities (1 - p )  and p .  It will become clearer in the following that the disordered spin 
model defined by the Hamiltonian (2.11) has some characteristic features in common with 
the random-field king chain, rather than with the ID Ising spin glass. Indeed, the three-spin 
couplings L, are, to some extent, analogous to a random magnetic field spread over three 
consecutive sites. 

The regime of interest for the theory of error-correcting codes is that of a weak 
level of noise ( p  << 1). We shall therefore refer to the couplings equal to (-1) as 
impurity couplings. The temperature T = 1 of Rujh’s FTD scheme corresponds to the 
so-called Nishimori temperature [ll],  where the binary spin-glass model (with only two- 
spin interactions) becomes exactly solvable, by virtue of the special form (2.10) of the 
strength of the interactions. 

The Hamming distance between the received message K (the only available information 
for the decoder) and any possible codeword y ( u )  in the coupling space {-I, +1IM can be 
expressed in terms of ‘?&(U), namely 

(2.12) 

This formula underlines the interpretation of MED as the search of the set of messages 
lying closest to the received sequence. Defining df as the mean distance between any given 
codeword and its noisy realizations, Rujh’s FCD method merely relies on the search of all 
the messages y whose distance to the received message K equals df, which is obviously 
larger than d [ K ,  y ( ~ ( ~ ) ) ] .  

3. Analytical results for the spin model 

We now turn to the study of the zero-temperature properties of the reduced Hamiltonian 
?tk(u), and to their interpretation in the language of information theory. We shall consider 
successively the following thermodynamical quantities, defined per spin. The ground- 
state energy EA(p) = E o ( p ) / J ( p )  (related to the minimum distance between the original 
sequence and its inferred interpretations in the coupling space), the zero-temperature entropy 
So(p)  (related to the number of different inferred messages, a measure of the reliability of 
the decoder), and the zero-temperature magnetization m(p)  (related to the probability of 
error per bit in the decoded message). We shall derive an exact expression for $ ( p ) ,  
whereas SO@) and m ( p )  will be obtained as power series in p ,  which are relevant in the 
small-p regime of interest. 

3.1. Exact ground-state energy 

We first recall the main lines of the transfer-matrix formalism for ID king models [12,13]. 
Let Z;,sl be the constrained partition functions of a chain of length n at temperature 
T = l/p, with the boundary conditions U“ = = f l ,  un-l = E~ = kl. These four 
random variables obey linear recursion relations of the form 



140 C Dress et a1 

where I, is the 4 x 4 transfer matrix 

with z = ep. The free energy per spin is given by the Lyapunov exponent of the product 
of non-commuting transfer matrices 

The analysis of low-temperature properties goes as follows [12-14]. The partition 
functions obtained by iterating (3.1) have a leading power-law behaviour at low temperature, 
namely 

In order to evaluate the ground-state energy Eh(p), it is sufficient to keep track of the 
exponents a,, b,, and c,. They obey the following recursion relations: 

G+I = maxWn + b., L, + cn) - max(K, + L,, a,) 

bn+l = max(0, K,, + La +a.)  - max(K, + L,, a,) 

G+I = max(K,, + c,, L, + bn) - + L,, a,) 

(3.5) 

and the ground-state energy is given by 

E!JP) = -2 + 4p - 2(( max(K, + L,, a.))) (3.6) 

where the double brackets ((. . .)) denote an average over the stationary joint distribution of 
the three variables (an, b,, CJ, which is invariant under the transformation (3.5). We have 
shown by iterating this transformation that the associated invariant distribution is supported 
by a finite set, which consists of 31 integer points in the threedimensional space (a, b, c). 
The statistical weights associated with these points have been obtained by solving the linear 
system which expresses their invariance under the recursion (3.5). 

We prefer to skip tedious calculations, and just give the following exact rational formula 
for the reduced ground-state energy 

with 

(3.7) 
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N ( p )  = 2 - 12p + 82p2 - 322p3 + 1002p4 --2542p5 + 5060p6 - 7873p7 

+ 14285~' - 5 5 4 8 6 ~ ~  + 248842~" - 874448~" + 2 3 8 3 0 8 8 ~ ~ ~  

- 5 2 0 6 9 6 8 ~ ' ~  +9349136p14- 1399232Opl5+ 17566864~'~ 

-18506368p'7 + 16281 SSSp'* - 11 846592~" +7016576pZ0 

- 3 302 144~"  + 1 189 376~" - 308 224pZ3 + 51 2OOpZ4 - 4 0 9 6 ~ ~  

D ( p )  = 1 - 6p +46p2 - 130p3 + 419p4 - 1030p5 + 1607p6 - 827p7 - 5714~' 

+ 37 267p9 - 159 858p" + 556 346p" - 1 653 662~"  (3.8) 

+4197065pl3 - 8714696pI4+ 13230758~'~ - 8419724~ '~  

- 27952108p" + 131 054496~" - 335734552~" + 6 4 9 5 3 0 2 8 8 ~ ~  

- 1026616304p2' + 1 367 175 616p" - 1555 663 3 2 8 ~ ~  , 

+ 1 521 159 8 7 2 ~ ~  - 1 278 948 9 2 8 ~ ~  + 921 379 84Opz6 

- 5 6 4 5 7 9 4 5 6 ~ ~  +290795264p2' - 123716096p29+42372096p30 

- 11 237 376p3' + 2 166784~~'  - 2 7 0 3 3 6 ~ ~ ~  + 16 3 8 4 ~ ~ .  

The reduced ground-state energy is plotted as a full curve on figure 2. It is a 
monotonically increasing function of p ,  from EA(0) = -2 to Eh(1) = -:. The broken 
curve on the figure shows a plot of the energy E:(p) of the ground states associated with 
the error-correcting code problem, taking into account the sign of J ( p )  defined in (2.10). 
namely 

-1.2 

-1.4 
h 

w a 
0 

w -1.6 
h 

w a 
0 

i-4 

-1.8 

-2.0 
0 0.2 0.4 0.6 0.8 1.0 

P 
Figure 2. Exact ground-state energy 
and its variant E i ( p )  defined in (3.9) (broken curve). 

of the reduced Hamiltonian 'H>(c) (full curve), 
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for J ( p )  z 0 i.e. 0 < p < 1 
(3.9) EA(1 - p )  for J ( p )  < 0 i.e. i < p < 1. I = 

This expression is invariant under the change of p into (1 - p ) .  as it should. The difference 
between E; and E; originates in the fact that 31x(a) and E ~ ( c T )  have identical ground 
states only for p < i. 

For p -+ 0, we have Eh(p)  = -2+4p-20p3-244p4+. . . . The first two terms of this 
expansion are nothing but the energy EF = -(r + r) = -2( 1 - 2p) of the ferromagnetic 
spin configuration (an = +1 for 1 < n < N ) ,  where the bar denotes an average over 
the quenched disorder. The next terms in the above expansion describe more complex 
configurations involving flipped spins (U" = -1). We shall come back to that point more 
extensively in section 3.2. For p -+ 1, we have E&) = -0 - 32(1 - p)/27 + . . . . The 
value Eh(1) = -4  is the energy of the periodic ground state (++ -)-, which is threefold 
degenerate. Finally, the reduced ground-state energy exhibits a very flat plateau around 
p = $. Indeed we have = -334/231+284800(p - $5/53 361 + . . . . This ensures 
that E i ( p )  is continuous, together with its first four derivatives with respect to p ,  at the 
symmetric point p = 4, where J ( p )  vanishes. 

The investigation of the complex singularities of thermodynamic functions often 
provides a useful alternative viewpoint (see [I51 for a review). In the present case the 
ground-state energy E&) is exactly known as a rational function of p .  Figure 3 shows a 
plot of its poles and zeros in the complex p-plane. The 34 poles and 34 zeros turn out to 
come in closely grouped sets, either as pairs or larger neutral molecules. This phenomenon 
is to be put into perspective with the fact that Eb(p) is almost a constant over a large part 
of the physical range [O, I]. 

Re P 
Figure 3. Exact poles (full symbols) and zeros (open symbols) of the reduced ground-state 
energy E;I(p) in the complex p-plane. The full line segment represents the physical range 
IO. 11. 
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3.2. Other zero-temperature observables 
The exact treatment of other zero-temperature observables, besides the ground-state energy, 
is, in our opinion, beyond the possibility of analytical calculations. For instance the 
evaluation of the ground-state entropy requires the determination of the distribution of 
the prefactors A:,&> which occur in the low-temperature behaviour (3.4) of the partition 
functions. This calculation cannot be worked out explicitly in degenerate situations such as 
the present one [12,13]. 

Since in any case the regime of interest is that of a low noise level ( p  << I), we have 
made use of an enumeration scheme which allows us to derive systematic expansions of 
various zero-temperature observables as power series in the concentration p of impurity 
interactions. The spirit of the approach is as follows. In order to expand observables up 
to order pk  included, introduce any number .f < k of impurity couplings K,, L, in a 
long enough chain, and look for all the spin configurations whose energies are less than 
or equal to that of the ferromagnetic state for that particular realization of disorder. The 
contributions of these realizations to physical observables are polynomials in the length N 
of the chain, but only the extensive terms (i.e. those linear in N) are to be kept, according to 
a well known argument used thoroughly, e.g. in high-temperature expansions in statistical 
mechanics (see [16]).  

The enumeration algorithm starts being non-trivial for k = 3; indeed. the difference 
between the ground-state energy given in (3.7) and (3.8) and the energy of the ferromagnetic 
state scales as p 3 ,  as already underlined in section 3.1. This behaviour can be explained 
as follows. Every spin U, occurs in five terms of the Hamiltonian 'Hk. At least three of 
those five coupling constants have to be impurity couplings, in order for the spin under 
consideration to be flipped in the ground state(s) of the chain. The statistical weight of such 
a realization of disorder is of order p 3  for small p .  The same argument applies to other 
properties of the ground states, and therefore shows that thermodynamical quantities at zero 
temperature, such as the entropy &(p)  and the magnetization m ( p ) ,  will be non-trivial only 
at order p 3 .  

Apart from a non-zero value of the zero-temperature entropy, the presence of many 
degenerate ground states with different local spin ordering has another consequence. The 
limit magnetizations m+(p) (respectively, m - ( p ) )  of the spin chain in an infinitesimally 
positive (respectively, negative) external magnetic field H -P 0' (respectively, H + 0-) 
do not coincide, in general. Rather, we expect m ( p ) ,  m+(p)  and m - ( p )  to be three 
different self-averaging quantities, obeying the thermodynamical inequalities m- ( p )  < 
m ( p )  < m+(p)  < 1 ,  with all the differences being of order p 3 .  The quantities m+(p)  
and m - ( p )  are to be identified with the upper and lower bounds of the distribution of the 
magnetization of all possible ground states, alluded to below (2.7). 

We again skip derails, and only give the following outcomes of the enumeration scheme, 
up to order p4  included 

EA(p) = -2 + 4 p  - 20p3 - 244p4 + 0 ( p 5 )  

~ o ( p )  = 2 + 3 In 9 p 3  + (-254 In 2 + 87 In 3 + 20 In 5)p4  + 0 ( p 5 )  

m+(p) = I - 2oP3 - 6osP4 + qP5) 
m ( p )  = 1 - 88p3 - 4244/5 p 4  + 0 ( p 5 )  

m-(p) = 1 - 154p3 - 980p4 + 0(p5). 

( 3 . 1 0 ~ )  
(3.10b) 

( 3 . 1 0 ~ )  
(3.1 Od) 

24.0902 -48.29 13 

- 
848.8 

(3.10e) 
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We wish to emphasize that an alternative method has been used in order to check all the 
above series, based on an expansion of the invariant distribution of the prefactors A:.e2 
introduced in (3.4), and of similar quantities, along the lines of 1141. 

We have extended the enumeration technique to another observable of interest in the 
theory of error-correcting codes. For RujBn's m scheme, Nishimori 191 showed that the 
average error per bit reads in the thermodynamical limit 

pe = - s) with s = sign(m,)r=I . (3.11) 

Because of the peculiar dependence on p of the Boltzmann weight at unit temperature (see 
equation (2.10)), exp[-ZJ(p)] = p/(l  - p), the FTD problem can also be dealt with by 
means of the enumeration scheme. It involves a few extra terms in the expansion of physical 
quantities, as compared with the zero-temperature expansion. Indeed, some of the low-lying 
excited states of the Hamiltonian 'Hk(cr) with, for example, three impurity couplings, may 
give rise to contributions to the average defining S. Our final result reads 

S = 1 -86p3 +6(p4) .  (3.12) 

4. Numerical simulations and discussion 

We now t u n  to a quantitative comparison of the analytical predictions derived in section 3 
with the outcomes of numerical simulations. 

Firstly, we have simulated the encoding model both for the MED (T = 0) procedure, 
by means of the zero-temperature transfer-matrix algorithm (Viterbi algorithm), and for 
RujBn's FTD (T = 1) procedure, using the finitetemperature transfer-matrix algorithm. The 
typical length of the input messages is of order 10' bits. and the error bars are obtained by 
averaging over up to 500 independent realizations, depending on the value of p. 

Our data concerning the average error per bit pe associated with the inferred messages 
are shown in figure 4, for both MED and FTD. In the first place, it is worth noticing that our 
data are far more accurate than those of previous simulations [8]. The numerical simulations 
become more and more difficult as p -+ 0, because the rate of errors in decoded messages is 
extremely low. Indeed there is only an error of around 1.5 on average for an input message 
of length 3 x lo5 bits and for p = 0.005 (the mean number of errors without encoding being 
1500). We have nevertheless been able to obtain reliable estimates of pe for values of p as 
small as p = 0.0075, i.e. roughly one order of magnitude better than previous works. 

In the whole range of interest (p < 0.15) the frequency of errors is only slightly smaller 
for FTD than for MED. In the small-p regime a quantitative comparison between analytical 
and numerical results is possible. A least-squares fit of all data in the range p & 0.03 yields 

p. x (43.67 f 0 . 4 8 ) ~ ~  + (423.6 =k 1 9 . 2 ) ~ ~  (MED) 
(4.1) 

pe % (42.86zk0.40)p3 f (307.2f 1 5 . 9 ) ~ ~  (FTD) 

in excellent agreement with the outcomes of the analytical small-p expansions (3.10d), 
(3.12), namely 

pe = 44p3 + 4 2 4 . 4 ~ ~  + O(ps) (MED) 

pe = 43P3 + U(p4) @". 
(4.2) 
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P 

Figure 4. Results of numerid simulations concerning the ratio p./p3, with pc being the 
average emor per bit for the MED (full symbals) and FTD (open symbols) approaches. The 
small-p expansion (4.2) for MED is shown as a full line, whereas the broken lines show the firs 
(4.1). 

The leading behaviour pe w 44p3 for the probability of error per bit in MED improves in a 
significant way a previously known upper bound [3], scaling'% pS/* for p -+ 0. 

The data shown in figure 4 also allow us to evaluate ihe threshold probability po 
such that p&o) = PO. We then have p , (p )  p for p c po (ihe encoding procedure 
improves transmission), whereas p&) > p for p > po (the encoding'procediwe worsens 
transmission, and thus becomes~useless). We obtain two very similar threshold values for 
both decoding procedures, namely 

Po w 0.13 (MED) 

po %0.14 (m) 
(4.3) 

the first value being in full agreement with that of [SI. 
Secondly, we have evaluated the full dependence on p of the zero-temperature entropy 

So, by means of a numerical iteration of the linear recursion relations. which can be derived 
for the four amplitudes A2.Q introduced in (3.4). As a check of this approach we recover 
the gound-state energy Eb(p)  given in (3.7) and (3.8). within an error of the order of 
5 x The data concerning &(p)  are shown on figure 5. A quantitative agreement 
with the analytical prediction (3.10b) is only observed for p < 0.05. In the opposite limit 
( p  + l), the entropy is found to vanish steeply, as S&) w $(l - p)ln(l - p ) .  This 
behaviour is a common characteristic feature of many ID random magnetic models with 
diluted disorder, such as the random-field king chain [13,14]. Finally, just like the ground- 
state energy, the zero-temperature entropy exhibits a very flat plateau near p = ;, around 
the value S0(1/2) w 0.0284. 

To sum up this work, we have shown how to obtain analytical results about the ground- 
state energy and related zero-temperature properties of a simple error-correcting code. We 
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0.04 

P 
Figure 5. Plot of the zerc-temperature entropy So(p).  Circles: numerical determination 
explained in the text. Full curve n w  p = 0 equation (3.10b). Broken CUNe near p = 0 
first term of(3,IOb). Full curve near p = I: logarithmic estimate given in the text. 

aim [17] at extending the present results to the more general situation where the two-spin 
and three-spin couplings have two different binary distributions, characterized by different 
magnitudes, and/or different probability weights. We also hope to extend the scope of the 
present paper to error-correcting codes commonly used in telecommunications, by means of 
the enumeration approach used to generate systematic power series in the level of noise p ,  
although calculations will become more tedious for convolution codes with larger ranges. 

Acknowledgments 

One of us, CD, is very indebted to Nicolas Sourlas for introducing him to the area of error- 
correcting codes and their relationship with spin glasses. He would also l i e  to thank CEA 
for their hospitality. Lorenzo Bergomi~is warmly acknowledged for his careful reading of 
the manuscript. This work has been partly supported by a Contrat de Formation Recherche 
from Ecole Polytechnique. 

References 

[ I ]  Shannon C E 1948 Bell Syst. Tech. 1. 27 379,623 
[2] Shannon C E and Weaver W 1962 The Mathematical Themy of Communication (University of Illinois Press) 
[31 McEliece R J 1977 The theory of information and coding Encyclopedia ,$Mathematics and if.? Applications 

[4] Clarck G C and Cain J B 1981 Error-CiJrrection Codingfor Digital Cnmmunlcation (New York Plenum) 
[SI Sourlas N 1993 Preprint LPTENS 93/4 
[6] Sourl3s N 1989 Norure 339 693 

vol 3 (Reading, MA. Addison-Wesley) 



Zero-temperature error-correcting code 147 

Derrida B 1981 Phys. Rev. B 24 2613 
Rujin P 1993 Phys. Rev. Len 70 2968 
Nirhimori H 1994 Proc. 2nd Tuipei Int. Symp. on Sfatirficoi Physics Physica 205A 1 
Sourlas N 1994 Euwphys. Lea 25 159 
Nishimori H 1980 3. Phy.s. C: SoiidState Phys. 13 4071; 1981 Pro#. Theor. Phys.66 I169 
Derrida 9, Vannimenus J .  and P o w  Y 1978 1. Phys. C: Suiid State Phy.7. 11 4749 
Luck I M 1992 Svstdms Dbo&nn& Unidimenrionnek (Collection AI&-Saclay) 

i l A j  Luck J hl. Funke-M. md Nicuwenhuiren Th M 1991 J. Phgr. A: .Math Gen. %-.lis5 
1151 1 9  kson C and Luck J hl 1985 Pror 1983 BrasovSchoul CwJ on Critical P l , e n , . . n r e M - T h e ‘ , . 4 [ i ~ ~ ~ ~ ~ t . ~  

[I61 Domb C and Green M S (e&) 1974 P h e  Tronrir,o,sand Cririml Plienumenu “01 3 (London: Academe) 
[Iq Dress C 1995 Thesis Uni!ersiry hris V I  10 s p p w  

(Progrerr in P1ysic.s) vol 1 I (Boston: Birkhauser) 


